Globally Optimal Crowdsourcing Quality Management

نویسندگان

  • Akash Das Sarma
  • Aditya Parameswaran
  • Jennifer Widom
چکیده

We study crowdsourcing quality management, that is, given worker responses to a set of tasks, our goal is to jointly estimate the true answers for the tasks, as well as the quality of the workers. Prior work on this problem relies primarily on applying ExpectationMaximization (EM) on the underlying maximum likelihood problem to estimate true answers as well as worker quality. Unfortunately, EM only provides a locally optimal solution rather than a globally optimal one. Other solutions to the problem (that do not leverage EM) fail to provide global optimality guarantees as well. In this paper, we focus on filtering, where tasks require the evaluation of a yes/no predicate, and rating, where tasks elicit integer scores from a finite domain. We design algorithms for finding the global optimal estimates of correct task answers and worker quality for the underlying maximum likelihood problem, and characterize the complexity of these algorithms. Our algorithms conceptually consider all mappings from tasks to true answers (typically a very large number), leveraging two key ideas to reduce, by several orders of magnitude, the number of mappings under consideration, while preserving optimality. We also demonstrate that these algorithms often find more accurate estimates than EM-based algorithms. This paper makes an important contribution towards understanding the inherent complexity of globally optimal crowdsourcing quality management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal crowdsourcing contests

We study the design and approximation of optimal crowdsourcing contests. Crowdsourcing contests can be modeled as all-pay auctions because entrants must exert effort up-front to enter. Unlike all-pay auctions where a usual design objective would be to maximize revenue, in crowdsourcing contests, the principal only benefits from the submission with the highest quality. We give a theory for optim...

متن کامل

Understanding Crowdsourcing Workflow: Modeling and Optimizing Iterative and Parallel Processes

The advantages and disadvantages of different crowdsourcing workflow structures have been analyzed. Existing studies on crowdsourcing workflow mainly focused on the quality control of the tasks using iterative and parallel processes. On the other hand, the characteristics of workflow considering the various task and crowdsourcing environments are not yet fully analyzed. Therefore, we face two d...

متن کامل

Efficient Collaborative Crowdsourcing

We consider the problem of making efficient qualitytime-cost trade-offs in collaborative crowdsourcing systems in which different skills from multiple workers need to be combined to complete a task. We propose CrowdAsm an approach which helps collaborative crowdsourcing systems determine how to combine the expertise of available workers to maximize the expected quality of results while minimizi...

متن کامل

Learning on the Job: Optimal Instruction for Crowdsourcing

A large body of crowdsourcing research focuses on using techniques from artificial intelligence to improve estimates of latent answers to questions, assuming fixed (latent) worker quality. Recently, researchers have begun to investigate how best to actively improve worker quality through instruction (Basu & Christensen, 2013; Singla et al., 2014). However, none of the existing work considers th...

متن کامل

SACRM: Social Aware Crowdsourcing with Reputation Management in Mobile Sensing

Mobile sensing has become a promising paradigm for mobile users to obtain information by task crowdsourcing. However, due to the social preferences of mobile users, the quality of sensing reports may be impacted by the underlying social attributes and selfishness of individuals. Therefore, it is crucial to consider the social impacts and trustworthiness of mobile users when selecting task parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014